

A platform for the efficient presentation of endogenously encoded epitopes to achieve optimal and balanced immune responses in immunity and tolerance

CD4-CD8 T cell cooperation

In immunity as in tolerance, cooperation between CD4+ and CD8+ T cells is critical. Cooperation is both direct and indirect (by modulation of antigen-presenting cell (APC) function). Co-presentation of epitopes from multiple antigens by the same APC is important to achieve this cooperation.

Types of antigen delivery

(if peptides, co-delivery not guaranteed)

(e.g. UNITE platform, Immunomic)

All types of antigen deliveries can achieve presentation on both class I and class II MHC, but only one type of presentation is optimal. When using soluble peptides/proteins, co-presentation is not guaranteed!

The Endotope delivery

Patent: US 10,238,741 (03/2019)

Epitope-based platform:

Selected (major) epitopes from diverse antigens Neoepitopes not present in native antigen (e.g. PTM epitopes, hybrid peptides, etc)

- ➔ Co-presentation is guaranteed
- → Optimal engagement of both CD4+ and CD8+ T cells is achieved

The Endotope delivery (In vitro studies)

COLUMBIA

Dastagir et al., 2017, MTMCD

The Endotope delivery

Different Endotope platforms for immunotherapy

Delivery system	Cancer immunotherapy	Tolerogenic immunotherapy (T1D)
DNA vaccine	Preclinical/clinical (full antigens, epitopes)	Preclinical/clinical (full antigen only)
RNA vaccine	Preclinical/clinical (full antigens, epitopes)	Not reported
DC vaccine (mRNA)	Preclinical/clinical (full antigens, epitopes)	Not reported*
DC vaccine (transduced)	Preclinical/clinical (full antigens, epitopes)	Not reported*

*Preclinical/clinical studies have used full antigen or peptide pulsing.

Implications / applications

Borst et al., 2018, Nature Rev. Immunol 18:635-647.

Research featuring Endotope

Publications:

• Dastagir SR, Postigo-Fernandez J, Xu C, Stoeckle JH, Firdessa-Fite R, Creusot RJ. Efficient presentation of multiple endogenous epitopes to both CD4+ and CD8+ diabetogenic T cells for tolerance. Mol. Ther. Methods Clin. Dev. 2016; 4: 27-38.

• Postigo-Fernandez J, Creusot RJ. A multi-epitope DNA vaccine enables a broad engagement of diabetogenic T cells for tolerance in Type 1 diabetes. J. Autoimmun. 2018; 98:13-23 (Epub 11/17/18).

- Firdessa-Fite R, Creusot RJ. Nanoparticles versus dendritic cells as vehicles to deliver mRNA encoding multiple epitopes for immunotherapy. Mol. Ther. Methods Clin. Dev. 2019; 16:50-62 (Epub 11/11/2019).
- Gonzalez Badillo F, Zisi Tegou F, Wright S, Scully M, Harwell L, Postigo-Fernandez J, Creusot RJ, Tomei A. Tissue-engineered stromal reticula to study lymph node fibroblastic reticular cells in Type I diabetes. Cell. Mol. Bioeng. 2020; published online (<u>https://doi.org/10.1007/s12195-020-00627-y</u>).

• Firdessa-Fite R, Toussaint-Moreau V, Stock F, Nyamay'antu A, Erbacher P, Creusot RJ. Promising non-viral vector for efficient and versatile delivery of mRNA for antigen-specific immunotherapy. Under revision for Cell & Gene Therapy Insights. 2020

Current collaborators on research featuring Endotope:

T1D immunotherapy project

Epitopes for tolerization in NOD mice

Epitopes for tolerization in T1D patients

Endotope constructs for human epitopes may be designed based on HLA haplotypes, patient's autoantibody profile; patient's circulating specific T cell profile (multiplexed MHC dextramers analysis), etc. Simplified Endotope construct with epitopes from human antigens are currently used in translational studies (humanized mice) and in vitro studies.

T1D immunotherapy with precision medicine

Endotope-T1D Therapeutic Window

Tolerogenic DNA vaccine

Comparison of proinsulin DNA vaccine and Endotope DNA vaccine (ET-M054/57) in NOD mice.

Mice received 50 μ g per week by intramuscular or intradermal injection.

P values (against control) are shown at the end of treatment period and at the end of experiment.

Protection conferred by Endotope appears more stable than proinsulin pDNA after treatment discontinuation.

Intramuscular

Intradermal

Note: Endotope ET-M054 and ET-M057 are fifth generation constructs as depicted in construct #3 (slide 10) with hybrid peptides added and designed for expression by DNA vectors. ET-M054 and ET-M057 differ by the residues flanking the epitopes.

Tolerogenic DNA vaccine

Endotope DNA vaccine is comparable to proinsulin DNA vaccine in NOD mice but may have an advantage when translated to patients with Type 1 diabetes. Why?

*Currently in clinical trials (Tolerion)

Tolerogenic DNA vaccine

Treatment was changed from weekly to every other week, and the effect of a co-delivered plasmid DNAencoded immunomodulator (IL-27) was also assessed.

Mice received 50 µg ET-M057 (±IL-27 pDNA) every other week by intramuscular or intradermal injection.

We have shown that Endotope-encoded antigens are presented for at least two weeks, yet reducing treatment frequency from weekly to biweekly reduced therapeutic efficacy.

Surprisingly, immunomodulation with IL-27 improved the efficacy with the intramuscular route but exacerbated disease with the intradermal route.

Tolerogenic DC therapy

Bone marrow-derived dendritic cells (DCs) were used immature after 6 days differentiation with GM-CSF and IL-4 from bone marrow progenitors.

Treatment was done in three intraperitoneal injections of 1×10^6 DCs electroporated with 2 µg ET-M056 mRNA (± 4 µg IL-27 mRNA) at 8, 10 and 12 weeks of age (indicated by grey arrows).

The same mRNA administered in nanoparticle formulation did not provide protection in most studies done.

In progress: bone marrow-derived dendritic cells (DCs) with enhance tolerogenic phenotype (after differentiation with GM-CSF, IL-4 ± rapamycin) are evaluated against several DC controls (no relevant antigen).

Note: Endotope ET-M056 is a fifth generation construct as depicted in construct #3 (slide 10) with hybrid peptides added and designed for expression by in vitro transcribed mRNA.

Value Proposition

COLUMBIA

→ more efficient and targeted engagement of specific T cell populations = more effective desensitization / tolerance induction = dramatic improvement of living conditions

Competition (T1D)

	Small molecules		Biologics		
	Long-acting insulin Lantus	Treg-promoting glycolipid RGI-3100	Neutralizing antibodies Teplizumab	Proinsulin DNA vaccine TOL-3021	Endotope
Restores immune tolerance	NO	YES	YES	YES	YES
Antigen-specific tolerance	N/A	NO	NO	YES	YES
Flexible & customizable	N/A	NO	NO	To some extent	YES
Broad antigen representation	N/A	N/A	N/A	NO	YES
Optimal CD4/CD8 T cell targeting	N/A	N/A	N/A	NO	YES
Stage	Marketed	Preclinical	Phase III	Phase II	R&D

Competition (cancer)

	Inovio	Immunomic	Moderna	BioNTech	Endotope
	inovio		moderna	BIONTECH	⊽ Endotope
Platform	DNA	DNA	mRNA	mRNA	versatile
Antigens	Multiple antigens	Multiple antigens	Multiplex vaccines	Multiple epitopes	Multiple epitopes
Targeting	Unclear	MHC-I or MHC-II	None (MHC-I)	None (MHC-I)	MHC-I <u>&</u> MHC-II
Broad antigen representation	Up to 3	Up to 3	Up to 6 (separate mRNA)	Unspecified, individualized	A dozen epitopes, <u>on</u> <u>same construct</u>
DC-based option?	No?	Yes	No?	No?	Yes
Stage	Phase II-III	PC-Phase II	PC-Phase II	PC-Phase II	R&D-PC

Endotope is the only platform offering optimal engagement of both CD4 and CD8 T cells by the same APC, guaranteed (one single construct).

The *Findotope* team

Remi Creusot, PhD

Principal Investigator Expert in T1D pathogenesis and immune tolerance

Jorge Postigo, PhD Associate research scientist ADA Fellow DNA vaccine platform

Rebuma Firdessa, DVM PhD

Postdoctoral scientist ADA Fellow DC/RNA immunotherapy

Advisors:

Magdalena Bogun, MD, Assistant Professor of Medicine (Columbia University), *Clinical Advisor, T1D Clinic and Clinical Trials, TrialNet liaison*

David Sachs, MD, Professor of Surgery (Columbia and Harvard University), *Scientific Advisor*, *Immune tolerance and transplantation*

Pawel Muranski, MD, Assistant Professor of Medicine (Columbia University), *Scientific Advisor, Cancer immunotherapy*

Roberto Mallone, MD PhD, Research Director (INSERM, Institut Cochin, Paris), Scientific Advisor, Human antigen-specific T cell profiling and analysis